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Abstract: — A simple, nonparametric sample test for equality of a given quantile function is developed which can be ap-
plied to a variety of the kernel distribution function estimators for dose-effect relationship data. The test statistic based on a
composition of a kernel estimate of the quantile function with a common distribution function estimate. Also test based on
a weighted L,-distance. In the given report we develop theoretical and computer research of this goodness of fit tests for
the dose-effect relationship. The asymptotic normality of the corresponding test statistic is established under the null hypo-
thesis. The obtained results can be used for interlaboratory comparison of results of effective dose estimation. A simple
simulation study demonstrates that the moderate sample size properties of this procedure are reasonable.
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1 Introduction

There is a need to test the hypotheses about the
coincidence of the observed distribution function of a
random variable with a given distribution function or
its accessories to a certain kind when alternative dis-
tribution is unknown in various problems related to
the application of mathematical statistics. These hy-
potheses can be tested using various statistics. Quite
often used tests based on the integrated square error
(see [1-5]). They are characterized by a specific
choice of measure of the discrepancy between the
"true” distribution function and its evaluation. The
first tests of this kind were the Cramer-von Mises-
Smirnov (CvMS) statistics and the Anderson-Darling
(AD) statistics, where CvMS- and AD-statistics be-
long to the class of quadratic EDF statistics (tests
based on the empirical distribution function). If the
hypothesized distribution is F,, and empirical (sam-

ple) cumulative distribution function is F, . then the

quadratic EDF-statistics measure the distance be-
tween F and F, by

N[ (F.(0) = R () () dF (x),
where @(x) is a weighting function. When the
weighting o(x)=1 and x;,X,,...,x, be the observed
values, increasing order, then the statistic (see [6,7]

Cs=n[" (F,()~F(x) dR,() =
1 &(2i-1 ’
ZEJFJZ_‘{[T_FO(XJJ .

D)
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is the CvMS-statistic. The Anderson-Darling test is
based on distance (see [2])

(ACEAC
ROIA—F,00)

—n _%i(zj ~1)(nFy () +In= Fy (%))

which is obtained when the weight function is
o(x) = (F,(X)L-F,(x)))™". For kernel density esti-
mators such test is based on the integrated square er-
ror (ISE), which asymptotic normality is established
in paper [3]. For dose-effect relationship the most
comprehensive study of such tests held Krishtopenko
D.S.in[8]

In this paper, we consider the quadratic integrated
measure of the deviation of the kernel estimator of
the distribution function of the theoretical distribution
function. The present work is devoted to the construc-
tion and study of goodness of fit test based on esti-
mates of quantile functions in dose-effect relationship

(see [9]).

2. Problem statement

(x) = )

il

We consider the model of binary response which
has title dose-response relationship [10-18] and
which can be described as follows.

Let {(X,,U,),1<i<n} be a potential repeated
sample of an unknown distribution F(x)Q(y),
F(x)=P(X; <x), Q) =P, <y), (x,y)eR?, in-
stead of which one observes the sample
U®={U, W), 1<i<n}, where W, =1(X, <U,)
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are the indicator functions of the event (X, <U,).
Here U, are regarded as injected doses, and W, as an
effect of the action of the dose U, . Let

F(x):j_xwf(t)dt and f(x)>0. We shall call this

situation the random plan of the experiment.
Together with the random plan, we consider fixed
plans of the experiment. Namely, the injected dose
U is supposed to be non-random and we let U, =u,,
i=01..,n+1 where 0=u, <u, <..<u, <u,, =1

On the main problem of the dose-response rela-
tionship is to estimate the effective doses
EDyy,, =F (A1) =X,, 0<A<1, by the sample U™ .
For fixed plans of an experiment, we shall consider
several nonparametric estimator and we shall find
their asymptotic (as n — oo ) distributions.

The nonparametric approach to the estimating
supposes the presence of kernel functions K, (x),

K, (x), being in fact symmetric densities of distribu-
tions with the support, say [-11], and bandwidth
h.,h,, which are smoothing non-random parameters

depending on the sampling size n and converging to
zero as n—oo, but nhy >0, nhy >w as n—»wo.

We also let Hy(u)=[" K, (x)dx.

If there is evidence that the distribution function is
(strictly) increasing we define

0 (A—F, (i
! ®

i=1

as an estimate of x, = F*(1) , where
otk e

r i=1
= _Z K, (X=U)W,.
Nz

is classical Nadaraya-Watson estimate (see [19,20] or

[15]).
Let
1
= [ (% (D) -x) 0(2)d2, (5)
0
where o(4)20,([o(2)d2=1) is the weight func-
tion.
Then
=21, + 1y, + 1y, (6)
where

1

0= [ Ren (1) = E(Ry, (DNE,, (2) - x,) 0(2)d2,

0
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(E(X, () -x,)* @(2)d2,

ot— 1 ot

(Rn(A) = E(%, (1)) 0(A)d A .

The terms 1,

tail.
Last integral we will present in the form:
l,,=J, +J4n,where

Ins = h“z Y. W= Fu))W; - F(u;))

r  Ki<j<n

and 1, will be studied in de-

,n? I2,n

h Kr,hr (Xi _ui)Kr,hr (Xi _Uj)
x'(l). 00) w(A)dA, @)
2 h Krz,hr (Xz _ui)
3o = hl,z Z(vv F(u) j TR QLR
Let
Gy = 2, W= Fu)W, - F(u)x
h Kr,hr (Xl _ui)Kr,h, (XA _uj)
x! o0 w(A)di. (9
Observe that
n3 nhl/z Zgnl : (10)

3. Main Assumptions

Assumptions (H)

(Hy) h =h(n),hy=h,(n), and h, -0, hy -0,

but nh, -, nh, > as n—>o.
(Hy) hy/h — 0.

(Hs) h, =cn™.

(Hy) nhhl® — oo,

Assumptions (K).
(K1) K;(x)>0,and K;(x)=0,x¢[-11], j=r,d.

(K,) jll K, (x)dx =1, jll K, (x)dx =1,

SL:P Ky (¥) <C,q)-
We set
| K=" K2 (dx. (12)

(K;) K. (xX)=K,(-x), xeR.

(K;) On segment [-1,1] there exist the third conti-
nuous bounded derivatives of the functions K, (x),
Ky (X).

(Ks) “KJ—szsxlEJ£|Kj(X)|=Kj<oofor j=r.d.
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The variation of the function K is defined in the
following way.
The variation of a real-valued function K = K(u)

a chosen interval (segment) [a,b] <= R is the follow-
ing quantity

V(K) = VE(K) =sup Y K () - K ()l (12)

where the supremum is taken over the set of all or-
dered partitions P of the segment [a,b]. If K is dif-

ferentiable and its derivative is Riemann-integrable,
then its total variation is the vertical component of the
arc-length of its graph, that is to say,
b
Vo (K)= [ 1K (9ldx. (13)

A real-valued function K on the real line is said
to be of bounded variation (BV function) on a seg-
ment [a,b]JeR if its variation finite, i.e.
K e BV([a,b]) © V°(K) <o . Throughout the work
we consider variations of function f on the segment
[0,1] and f eBV([0,1]).

Remark 3.1. The boundedness of the derivatives
of the functions K, (u), K,(u) on the segment [-1,1]
(Assumption K,) imply that their variations are

bounded (see [21]), i.e. V(Kj,)) <oo.

Assumptions (F).

(F1) There exists the third continuous bounded de-
rivative of the density of the distribution
f(x)=F'(x),and f(x)>C,>0 for 0<x<1,i.e.0n
the segment [0,1], the density f (x) is separated from

ol

Assumptions (P).
(P) As n— o,
. . k 1
Assumption (P) yields u, =—+0O| = |, at that,
n n

k

n

max max<|(u, ——|,|u
K=01.. { k k+1

the sequence n(uk —Ej is bounded by C uniformly
n

in0<k<n.
Throughout the work (Main) Assumptions (H),
(K), (F). (P).

4. Auxiliary results.

In this section we represent the auxiliary results
needed to study the asymptotic behavior of the statis-
tics 1, 1,, 1.

Let B be the Lebesgue o —algebra on
I°=[0,1)° and p is the Lebesgue measure on B .

For P ={u,,u,,..,u,,u,,,.} and BeB we define

ISSN: 1998-0159 129

Volume 9, 2015

ABP)=Y z(u),

D, (B ;P)=sup @

BeB

- p(B) ‘ ; (14)

where y,(x) is the characteristic function of B. The
discrepancy D, (P)=D; (u,,...,u,) of the point set P
is defined by D,(P)=D,(J;,P) where J is the
family of all subintervals of 1° subset of | of the
form [T, [0.u,).

For each bounded function w:R —>R we let

]|, =sup,o lw(X)I.

Theorem 4.1 ([21], Koksma-Hlawka inequality)
If a function f(u) (0<u<1) has bounded variation

V(f) on [0,1], then, for any O<u, <u, <..<u, <1
we have

1 ¢
Hzll f(ui)—lf(u)du

For s=1, we may arrange the points u,,...,u, of

a given point set in nondecreasing order. The formula
in Theorem 4.1 is due to Niederreiter [21].
Lemma4.l. If O<uy, <u, <..<u, <1, then

<V(f)D, (u,,...,u,) .

1 2i—1
D (u,...,u,) =—+max|u, ——— 15
enty) = max|y ~ (15)
Remark. If  then ~— 2-1_1 and
n n 2n

* 1
D, (u,...,u,)=—
n

In what follows we shall make use of the follow-
ing auxiliary result.

We consider the function

Fofuy=tk|FW=-4) (16)

hd hd

where 0< 1 <1.

Lemma 4.2. [9] Suppose that the main assump-
tions hold. Then

- Lo - 1
V(f)=supZ| fu;) - f(uj—1)|=o[h—],
=t d
where the supremum is taken over all ordered parti-

tions O<u, <u, <...<u, <1 of the segment [0,1] .

We represent the statistics X, (1) as
Xn(A) =X, +A, (17)
where . :_ZH (F(l/n) i}
d i=1 d

We define the statistics
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13 Fon, (/M) =21 F@i/n)—4
A(ﬂ)—n;[Hd(—hd j Hd[—hd D
(18)
Then
A—F(i/n)
s kA0
<(F,, (i/0) = F(i/n) :p>w 0. (19)

Consider the statistics A, and represent it as
A = A+ Al,Z’

1 F@i/n)-4
AM:——. K, [—( h) jx
= y

x(Fy, (1/1) —E(Fy, (/1)) (20)
I Kd[F(i/n)—;t]><
‘ nhy = hy
x(E(F,, (i/n))~F(i/n) (21)

Theorem 4.2. [9] As n — oo,

4 F(@i/n
X, .= - ZH[ (i/n)- j X, +a,,hf +o(h),

d i=l d
(22)
where

vat'(x)
21%(x,) g

x,=F*(2),a,, = j 2K, (x) dx. (23)

5. Main result.

The main result is the following theorem in which it
is proved central limit theorem for integrated square

error p’, i.e. global integrated measure of deviation
between X, (1) and X, .

Theorem 5.1. Under stated assumptions and as-
suming that h —o, nh®—>u O<a<w, as
n — oo, we have

d
d(n)(p; —c(n) > N(@4u"®o} + ), (24)
where

d(n) =
c(n) = J(E(Xl (AN =x,)? o(2)d2+(nh) o7, (26)

nh¥2, (25)

of =/ 4K, jo f4(x,)A0=A)(F'(x,))’ 0 (1)dA,
V2= j_llszf(x) dx, 27)
o =2Ef“‘(xl)/lz(l—/%)za)z(/l)d/lx

xI(IKr(X)Kr(X+ y)dx), (28)
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o2 =|K,|f J’:f’z(xi)/l(l—ﬂ)a)(/i)d/l,

[k [ = [KZ(x)x. (29)

We shall consider the terms in expansion (1) indi-
vidually, via a sequence of lemmas 5.1 — 5.4.

Lemma 5.1. Under stated assumptions, 1, fol-
lows asymptotically a normal distribution
(as n — o) with the parameters (0,5;) , where

WK a2 Fex)Y
of ==, £f2(xl) o) w(A)dA. (30)

Let's notice that if weight function

e 1, for A€[F(-A),F(A)], 31
o )_{ 0, otherwice, (1)
then

o7 ~TVIKT T ECOU-FOOF0O Y ¢
I 4 T f (%) '

Define the variables

F@i/n)—4
o= F(u, K| —————
51 Zhdhr(\N ( ))z { h, jx
i/n-u,
xKrL Jj. (32)
hd
Then A,, :sz and
i=1
g~ - hdhr(W F(u;)) =
min(uj+h,,F (/1+hd)) —u.
< Kd(F(X)_ij-Kr(ﬂjdx.(%)
A h, h
max(u; —h, ,F ™ (2-hy)) v
2¢7
Set aZrz—Lm. From [9] follows that as
' f(x,)
n — oo,
o vih2f'(x,)
E AN)=X, ~——r 27 34
(%, (1) =X, 21(x,) (34)
. Al-A) 2
D A)) ~ K.l - 35
(e -5 5 I (35
Therefore

D(i;}iD(g 2h 72 ZG(U )

2
min(u; +h, ,F(1+hy))
b — X—=U.
x [ K| EOIZA e 224 gy | -
max(u;—h, ,F 7 (21-hy)) hd hr

min(u+h, ,F(1+hy)) _
— h2 IG(U) I Kd(F();) ﬂblx
it o max(u—h, ,F(A-hy)) d
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ok

Making the substitution ( _y, we will re-
ceive
1 W;-F(u)) Fr(A+hy)-u; )
S ~_H'T1Kd(y) Kr[ N ]dy
1 W SFE)) (XY _
nh, f(x,) Kr[ IK"(y)dy_
(T G u;
nh f(x,) “ hr
and

n 17 J(u=x,
;D(;ywle(um (h—r]du. (36)

... U=X
Once the substitution 2 = 7 was made the result-

ing integral became

1

b ) _A(-2) )
NEATS j G(x,) K} (2)dz _W”K'” (37)
Therefore

E(A)=E(A,) ~ - th];X(); 2 (38)
Thus,
(%, ()~ 252, (39)
f2(x,)

A v £'(x,)
and E A)=X,)~—— 1 A7

(%,,(A)=X;) 26(x,)
We have

| = [ (ER, (1)~ x,)?0(2)d 2 ~

)
4 L f(x)
A !
where JA(f)z:[A( ‘; ((;‘))j f(x)dx.
Really, using into consideration that
E(%,,(4) =x,, +E(4) =
=X, +a,4h; +o(h}) +E(A) =
=X, +a,4h; +o(hi) +A,,,
this follows from lemma 4.1 and from [5] , that

_ v 2f(x) 2
12 2 h f( /1) o(hr)’

o(A)dA= fhf\] A(T), (40)

A (41)
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we deduce
(E(X,(A) = X,,)* =

:(az,d hg —V—Z'th(ln FO) e, +0(hf)+0(h§)j - (42)

From the conditions (F,), (H) and the bounded-

ness of function F(x.) , we have the following lem-
f(x,)
ma.
Lemma 5.2. Under the stated conditions,
4 4
o0 =215 0, (100, (43)
as n— .

Proof. The result (43) follows from [4].

Lemma 5.3. Under the stated conditions, we have
/1(1 1)

ot KI5
(%)

w(A)di, (44

n~>oo

as N—oo.
Proof. Set H(u) =F(u)(@— F(u)). Then

1 h Krz,h, (X, —u;)
E(J.n) ——Z DONi)IW

LKZ, (X, —Uyp)
:_Z ()I £2(x,)

(j HU)KZ, (%, —u)du)a)(/l)d/l—

o(A)dA=

w(A)d A ~

(I:H (x, +th )KZ (1) dt)w(;t)dg ~

A(1-A
||||I( )

A)dA.
F2(x,) e

(45)

In addition,

1

D(J4n)=nizzn:D((\Nl_F(ul))2)(J‘ rh ( Y

‘Mm:
o) ”j

15 h Kr,hr (Xl _Ui) i
F;H(Ui)(l_ZF(Ui))['([Wm(l)diJ .(46)

Employing the Koksma-Hlawka inequality we obtain

1 i ¢ Kr2,hr (XA —U) ’
D(J‘m) :E.([H(U)(l—ZF(U))(_([me(l)dﬂj dux
x(1+0(l), asn—>w. 47
Next,

1¢ LKZ, (x, —u) C

A, :H!H(”)(l_z':(“))uwa’w“] du =
U@m(z)dzl dt

5 %)

But 0<H(u)<1/4, |1-2F(u)|<], therefore
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o()drY . K
0<A1< IK (t) t(j fz(xi))dtgmhrcgn% :

That is, D(J4,n) — 0. Hence, by Chebyshev in-

equality, we receive result of the lemma 5.3.

Lemma 5.4. As n—oo the sequence J, s

asymptotically normal with parameters (0,07),
where
201 _ 1\2
32:2]-/1 (} A)
f(x,)
.(48)

o(A)dA[dt([K, (WK, v +t)du)2

Proof. Let's consider J,, =%Zgni , where
n

=3 W, - F(u)W, - F(u,))x

i=j+1
xj‘ Kr,hr (Xz _ui)Kr,hr (Xz _uj)
0 f2(x,)

Let F =o(X,,X,,...X,) be the o-algebra,
generated by the random variables X, X,
Then {¢., F }oen» N1, is a martingale-difference
(see [22], p.442), since E(g, )< and
E(s.|F.,)=0. To prove the asymptotic normality
of J,,;, itis necessary to show (see [22], p.442, theo-
rem 8 (II)) that

o()di. (49)

2h3 ZE(gn. 1(|, > 6nh¥?) | F ) —> 0, (50)
5 €(0,D);

2h3 ZE(gnl | 1) _) O-3 (51)

We have

§nZI =W, _F(Ui))2><

(Z W, - F(y, ))jK[X . jK{X;“"]w(xme .

j=i+l

As the random variables W,, W, , ..., W, ; and W,
for j>i are independentand E(W, —F(u;))=0,
then

E(&i 1AL) =Fu)@-Fu)), (52)

(JZ%(W Fu)[K [ ]Kix_huj}w(x)dez

= F(u)- F(ui))zn: F(u;)A-F(u)))x

x(J‘K(X;ui jK[X_h“" jw(x)dx}z.
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Hence, as n —» o,

4 n
Y B )=
i=1

i-1 j=i+l

:nz j
X=U; X—Uj 2~
x[jK[ - jK[ - ja)(x)dx]
~4n [ F(u)(L- F(u))duT F(v)(1- F(v))dvx
X—U X—=V 2
XUK(TJK[ - Ja)(x)dxj =

=4h*[Fu)@- F(u))duT F(v)(1— F(v))dv x

XUK(t)K(%Hj o(u +th)dtj -

=4[ F(u)(1- F (u))e* (u)du x

XT F(u+zh)d-F(u+ zh))dz(IK(t)K(z +1) dt)z _
= 2[ F(u)(1- F(u))e’ (u)dux

X[ F(u-+ zh)(1—F(u-+ zn)dz([K (1)K (2 +1) dt)z.(54)

From the condition (K3) imply the following: if

-1<t<1 .
—1<z+t<1’|'e' —2<z<2,then,as n -,
2h3z (§n|| 1)—

=2 j F(u)(1- F(u))@®(u)du x

x.zf Flu+zh)@-Fu+ zh))dzU K({t)K(z +t)dtj =
= 2j F2(u)(1- F(u))?@?(u)du f dz
= 2[F?(u)(1- F (u))’ @’ (u)du [ dzx

x(jK(t)K(z+t)dt)2=a§,

therefore condition (51) is satisfied.
Furthermore,

1 n-1
T D EE(&, > onh®?) |F ) <
i=1

(55)
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52 4h6 ZE(gnl | F—l) (56)

Consider the sum on the right-hand side of this in-
equality. By virtue the condition (Al) we have

lo(x)| <M, therefore

E(iIFL)=
= E{Wi - F(Ui)}4 X

xE(Z w, - F )| 2 jKﬁ“"jw(xmxT

j=i+l

—E{W, - F(ui)}“E[th: W; —F(u)x

U —u. ’
ij(z)K( 'h ‘+z]a)(ui+zh)dz]. (57)
By virtue the condition (A1) and (L1) we have
lo(x)| <M and |K(x)| <K, from which
E(E | AL S MAKAh EQW, — F(u)¥ x
xE[Zn:(\NJ- —F(uj))IK(z)dzJ _

j=i+l

= M*K*h*'E{W, — F(ui)}“E(Zn: W, —F(U,-))j <

j=i+l

SlGM“K“h“E[Zn:(\NJ.—F(uj))j : (58)

j=i+l
Arguing similarly to [22], p.380, and using the in-
dependence of rv W; and W, at j =k, we receive

E(i(wj ~F(, »j =

j=i+l

ZH:E(\Nj—F(uj))4+

j=i+l

16 Y EW,-F(U)EW, -F(y,) =

i+1< j<k<n

= Zn: ((F(u)*@=Fu)))+Fu)@-Fu)))+

+6__ Z F(u))d-Fu))F(u)@-F(u)) <
n—i

< *s (n |)(n—i+1)s§(n—i+1)2, (59)

: 1
4 4y _
since mOS%(x (@1-x)+x1-x) )_—12.
Let's notice that

n o -1)(2n-1) _n®
;(n—wl) :WS%. (60)
Thatis

2h3 ZE(én. 1(1&, > 6nh*2)| A) <
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6KMh4”1 2K*M*
2. 416 Z(_ 2 ﬁ
o°n*h o°nh

i=1
So, in this case condition (50) is satisfied. Now
from [22] that the sequence J ., is asymptotically

normal with parameters (0,57) .

Remark 5.1. For Epanechnikov kernel

K(x) = (3/4)(L-x*)1(| x|<1), the convolution equals
3/360)(32 — 40x? + 20x® = x°),0< X < 2,

(K K — | /3600 + )
(3/360)(32 — 40x* — 20x° + x°),-2 < x < 0.

— 0.(61)

Therefore
jdv(j K (U)K (u +v)o|u)2 =167/387 ~0.434.

Let's notice that

= [ (F, (9 - E(F, CON(E(F, () - F(x)) x(x) ok,
15 = [ (E(F, ()~ F (%))’ @(x) dx.

Hence, I, —c(n)=21,+1,,+1,,, where
c(n) = [ E(F, (x) - F(x))’dx =
= [(E(F,(x)) ~ F(x))*dx+ n*h "o

From lemmas 5.1 — 5.4 we derive the theorem
5.1

In addition, we see that the error p? may be writ-
ten as

pl =2ko,n’h’g, + o + 2% o ,nth g,
(62)
where the random variables ¢, and ¢, are each
asymptotically normal N(0,1).
The statistics p? is offered to be used for testing the

goodness of fit of a statistical model. Asymptotic p-
values for statistics can be obtained using the quantile
of standard normal distribution.

6 Reduction of a measurement error

Let the dose U is measured with an error, i.e.
Y =U + ¢, where U,¢ are independent random va-

riables and € e R® has normal distribution with d-
dimensional mean vector 0 and a known d xd co-
variance matrix X, and the random vector U has
unknown density g(u) >0. The regression curve of
U with respect to Y it can be written in form

u(x)=EU|Y = x)_%

where

r(x) = [ug(u) x

1 1
XW| exp(—z(u —X)'Z,(u- x)jdu
0
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a(x) = [ g(u) x

1
X—(zﬂ)d” N |exp(—5(u -x)"Z,(u- x)]du.
0

Differentiating q(x) with respect to x yields

(see [23])

V,(X) = =Z5"xq(x) + 25 () ,
where the symbol V(x) denote the 1xd matrix
of first-order partial derivatives of the transfor-
mation from x to q(x).

Let the random vector Y has normal distribu-
tion with d-dimensional unknown mean vector a
and a known d xd covariance matrix . Then

V_ (X
ZO ﬁ =X+ @ =V

q(x a(x
from where
vV, (x)

q(x
Since a and X are unknown, we will estimate
them on sample vy,,v,,...,y, with the help of the

following the statistics

ét=7=12yi and
N
L

(x)=2"(x-a),

Inq

z, +X=(Z-Z,)Z'x-Z,2a.

n

A~

2=S

SACEIE

The regression estimation in this case will be
equal
G,(X)=(S-Z,)S'x+Z,S'y.
If instead of x we will substitute observable
value y;, then the corrected value of a vector U,

~

we calculate the corrected value of a vector U,
using the formula
U =u,(y)=(S _Zo)silyi + 208717 :

7 Numerical properties

In this section, we report the results of the re-
search of power of our test.

We consider the case when the initial data does
not include measurement error, the case when a
measurement error is superimposed on the initial
data and the case when examines the data with
overlay measurable error after conversion

For the error distributions, we consider the
normal distributions N (0,0.4%), N (0,0.8%).
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——The initial data with the imposition of a measurement error N(0,4"2)
——The data overlay measurable error after conversion

The initial data without imposing a measurement error

Fig. 6.2. Power functions for the initial data
with the imposition a measurement error
N (0,0.4%)
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——The initial data with the imposition of a measurement error N(0,8"2)
—The data overlay measurable error after conversion

The initial data without imposing a measurement error

Fig. 6.4. Power functions for the initial data
with the imposition a measurement error
N (0,0.8%)

By construction, in the application package MatLab
graphs easy to see that in the case when a measure-
ment error is superimposed on the initial data, the
power of the test is less than in the case of direct ob-
esrvations. But after converting the data with the su-
perimposed measurement error power function shows
good results (better than in the case with the imposi-
tion error) for different values of dispersion of the
distribution error as seen from the Fig.6.1 - Fig.6.4.
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8 Discussion

Numerical simulations shows that if at fixing
the observations there is a measurement error, the
power of the test is reduced and also it becomes
displaced. To reduce the influence of errors, we
apply the procedure to reduce the error by the
algorithm described in paragraph 6. The graphs
show that the statistical characteristics of these
tests after this procedure improved. Namely, the
capacity of the test becomes larger, the offset of
the test decreases.
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